X-Ray Crystallographic Determination of the Structure of $(\pi-C_5H_5)_2Rh_2Fe_2(CO)_8$ —a Complex with an Unexpected Distribution of Ligands

Around a Tetrahedral Cluster of Metal Atoms

By MELVYN R. CHURCHILL*† and MIKELIS V. VEIDIS

(Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138)

Summary The molecular structure of $[(\pi-C_5H_5)_2Rh_2Fe_2-(CO)_8]$ has been determined by single-crystal X-ray diffraction techniques.

THE reaction of $[(\pi-C_5H_5)Rh(CO)_2]$ and $Fe_2(CO)_9$ has been shown¹ to give rise to an interesting series of trinuclear and tetranuclear mixed metal cluster complexes. One of these, $[(\pi-C_5H_5)_2Rh_2Fe_2(CO)_8]$, shows an i.r. spectrum with five terminal and two bridging carbonyl stretches, and a ⁵⁷Fe Mössbauer spectrum which suggests two different iron environments ¹ Since no unambiguous structure could be assigned to this molecule, we have subjected the compound to a single-crystal X-ray diffraction study.

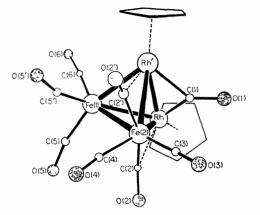
† Fellow of the Alfred P. Sloan Foundation, 1968-1970.

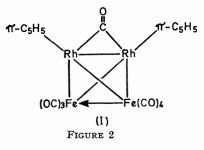
Crystal data: $C_{18}H_{10}O_8Fe_2Rh_2$, M = 671.78, orthorhombic, a = 17.979(15), b = 12.079(12), c = 9.386(8) Å, U = 2038.3 Å³, $D_m = 2.11$, $D_c = 2.188$ gcm⁻³, Z = 4, space group *Pnma* (D_{2h}^{16} , No. 62).

Diffraction data to $\sin \theta = 0.38$ (Mo- K_{α} radiation) were collected on a Supper-Pace "Buerger Automated Diffractometer" and were corrected for absorption ($\mu = 30.15$ cm⁻¹). The structure was solved by Patterson, Fourier, and leastsquares refinement techniques. All non-hydrogen atoms have been located, the present discrepancy index being R = 7.90% for the 627 independent non-zero reflections.

As shown in Figure 1, the molecule has precise (*i.e.*, crystallographically-dictated) C_s symmetry, with the

molecular mirror plane passing through Fe(1), Fe(2), C(1), O(1), C(3), O(3), C(4), O(4), C(6), O(6). Distances within the tetrahedral metal atom cluster are: Fe(1)-Fe(2) =2.539(7), Fe(1)-Rh = Fe(1)-Rh' = 2.570(5), Fe(2)-Rh = Fe(2)-Rh' = 2.589(5), and Rh-Rh' = 2.648(4) Å. Ligands are distributed among metal centres in the following way: one π -C₅H₅ ligand is associated with each rhodium atom, and a carbonyl group bridges the two rhodium atoms [Rh-C(1) = Rh'-C(1) = 1.96(4) Å]; two carbonyl groups




FIGURE 1. The molecular structure of $[(\pi-C_5H_5)_2Rh_2Fe_2(CO)_8]$. Atoms lying in and below the molecular mirror plane are numbered Atoms lying above the mirror plane are numbered with normally. a prime.

[C(3)-O(3) and C(4)-O(4)] are attached terminally to Fe(2)and three to Fe(1). The remaining two carbonyl ligands [C(2)-O(2)] and the symmetry-related C(2')-O(2')] are involved in asymmetric bridge systems in which Fe(2)-C(2)= 1.79(4) and Rh \cdots C(2) = 2.18(3) Å.[†] The Fe(1) \cdots C(2) distance of 2.81(4) Å is essentially non-bonding.

It is pertinent to note that similarly asymmetric M-(CO)-M bridges have previously been reported for $[Fe_4(CO)_{13}^{2-}]$,² a species isoelectronic with the unknown (and, apparently, sterically unattainable²) Fe₄(CO)₁₄, which, along with the present $[(\pi - C_5 H_5)_2 Rh_2 Fe_2(CO)_8]$ and with $[(\pi - C_5H_5)RhFe_3(CO)_{11}]^1$ (presently under crystallographic investigation in our laboratories), is a member of the $[(\pi-C_5H_5)_{4-n}Rh_{4-n}Fe_n(CO)_{3n+2}] \text{ series.}$

Polynuclear transition-metal carbonyl complexes are customarily treated within the framework of the valencebond method, with the object of showing that each metal

atom achieves the appropriate noble-gas configuration. Tetrahedral metal carbonyl clusters are generally consistent with the "noble-gas rule," having 60 outer valence electrons associated with the metal atoms (18 per atom, 12 electrons being shared in metal-metal bonds). In $[(\pi - C_5H_5)_2Rh_2Fe_2 (CO)_8$], however, while the 60-electron total is achieved, no classical valence-bond description of the observed molecular geometry is consistent with the assignment of 18 outer valence electrons to each metal atom. [[(I) (Figure 2)

which ignores rhodium participation in the asymmetric Fe-(CO) \cdots Rh bridges, is perhaps the closest approach.] Similar observations apply to the azulene complex [Me₃C₁₀- $H_5Ru_4(CO)_9]^{3,4}$ and to $[Fe_4(CO)_{13}^{2-}]^2$ The tetranuclear metal carbonyl clusters are therefore better treated by a molecular-orbital method; Kettle5,6 has presented a qualitative scheme. It should be emphasized, however, that violations of the "noble-gas rule" observed in tetrahedral metal clusters usually seem to arise from stereochemical and spacial requirements of the surrounding ligands.

The weakness of the valence-bond approach is further shown by the full range of octahedral metal carbonyl cluster complexes {e.g., Co6(CO)16,7 [Co6(CO)152-],8 [Co6- $\begin{array}{c} ({\rm CO})_{14}{}^{4-}], {}^{\theta} \ [{\rm Ni}_2{\rm Co}_4({\rm CO})_{14}{}^{2-}], {}^{10} \ {\rm Rh}_6({\rm CO})_{16}, {}^{11} \ [{\rm Rh}_6({\rm CO})_{14}{}^{4-}], {}^{12} \\ [{\rm Rh}_{12}({\rm CO})_{30}{}^{2-}], {}^{13} \ {\rm Ru}_6({\rm CO})_{17}{\rm C}, {}^{14} \ [({\rm arene}){\rm Ru}_6({\rm CO})_{14}{\rm C}], {}^{15} \end{array}$ [H₂Ru₆(CO)₁₈]¹⁶}, each of which has a metal skeleton which is associated with two electrons in excess of the number predicted on the basis of the "noble-gas rule." The sole heptanuclear cluster complex, [Rh₇(CO)₁₆³⁻],¹⁷ also has this two-electron excess.

We thank Dr. M. J. Mays for providing the sample and the National Science Foundation and Advanced Research Projects Agency for financial support.

(Received, February 23rd, 1970; Com. 259.)

[‡] We believe that this is the first reported complex in which a carbonyl ligand forms a bridge from a first-row to a second- (or third-) row transition metal: cf. E. W. Abel and F. G. A. Stone, *Quart. Rev.*, 1969, 23, 325, especially p. 331, lines 4-6.

- ¹ J. Knight and M. J. Mays, submitted for publication.

- ² R. J. Doedens and L. F. Dahl, J. Amer. Chem. Soc., 1966, 88, 4847.
 ³ M. R. Churchill and P. H. Bird, J. Amer. Chem. Soc., 1968, 90, 800.
 ⁴ M. R. Churchill, K. Gold, and P. H. Bird, Inorg. Chem., 1969, 8, 1956.
- ⁵ S. F. A. Kettle, J. Chem. Soc. (A), 1966, 1013.
 ⁶ S. F. A. Kettle, Theor. Chim. Acta, 1966, 4, 150.

- ⁷ V. Albano, P. Chini, and V. Scatturin, Chem. Comm., 1968, 163.
 ⁸ V. Albano, P. Chini, and V. Scatturin, J. Organometallic Chem., 1968, 15, 423.
 ⁹ V. G. Albano, P. L. Bellon, P. Chini, and V. Scatturin, J. Organometallic Chem., 1969, 16, 461.
- ¹⁰ P. Chini, S. Martinengo, and V. Albano, Proceedings of International Symposium on Metal Carbonyls, Venice, Sept., 1968, A-3, Inorg. Chim. Acta.
- . R. Corey, L. F. Dahl, and W. Beck, J. Amer. Chem. Soc., 1963, 85, 1202.
- 12 P. Chini and S. Martinengo, Chem. Comm., 1969, 1092.
- ¹⁹ V. G. Albano and P. L. Bellon, J. Organometallic Chem., 1969, 19, 403.
 ¹⁴ A. Sirigu, M. Bianchi, and E. Benedetti, Chem. Comm., 1969, 596.
- ¹⁵ R. Mason and W. R. Robinson, *Chem. Comm.*, 1968, 468.
 ¹⁶ M. R. Churchill, J. Wormald, J. Knight, and M. J. Mays, *Chem. Comm.*, 1970, 458.
- 17 V. G. Albano, P. L. Bellon, and G. F. Ciani, Chem. Comm., 1969, 1024.